DocumentCode :
692265
Title :
Supervised dictionary learning using distance dependent indian buffet process
Author :
Babagholami-Mohamadabadi, Behnam ; Jourabloo, Amin ; Zarghami, Alireza ; Baghshah, Mahdieh
Author_Institution :
Comput. Eng. Dept., Sharif Univ. of Technol., Tehran, Iran
fYear :
2013
fDate :
22-25 Sept. 2013
Firstpage :
1
Lastpage :
6
Abstract :
This paper proposes a novel Dictionary Learning (DL) algorithm for pattern classification tasks. Based on the Distance Dependent Indian Buffet Process (DDIBP) model, a shared dictionary for signals belonging to different classes is learned so that the learned sparse codes are highly discriminative which can improve the pattern classification performance. Moreover, using this non-parametric method, an appropriate dictionary size can be inferred. The proposed method evaluated on different standard databases demonstrates higher classification accuracy than other existing DL based classification methods.
Keywords :
codes; learning (artificial intelligence); pattern classification; statistical distributions; stochastic processes; DDIBP model; databases; distance dependent Indian buffet process model; nonparametric method; pattern classification tasks; sparse codes; supervised dictionary learning; Accuracy; Data models; Databases; Dictionaries; Kernel; Sparse matrices; Training data; Dictionary learning; Gibbs sampling; MAP; graphical model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing (MLSP), 2013 IEEE International Workshop on
Conference_Location :
Southampton
ISSN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2013.6851793
Filename :
6851793
Link To Document :
بازگشت