DocumentCode
6925
Title
Robust Fault Diagnosis of Aircraft Engines: A Nonlinear Adaptive Estimation-Based Approach
Author
Xiaodong Zhang ; Liang Tang ; DeCastro, Jonathan
Author_Institution
Dept. of Electr. Eng., Wright State Univ., Dayton, OH, USA
Volume
21
Issue
3
fYear
2013
fDate
May-13
Firstpage
861
Lastpage
868
Abstract
In this brief, a fault detection and isolation (FDI) method is developed for aircraft engines by utilizing nonlinear adaptive estimation techniques. The fault diagnosis method follows a general architecture developed in previous papers, where a fault detection estimator is used for fault detection, and a bank of nonlinear adaptive fault isolation estimators are employed to determine the particular fault type/location. Each isolation estimator is designed based on the functional structure of a particular fault type under consideration. The general FDI architecture is applied to a realistic nonlinear aircraft engine model recently developed by NASA Researchers. In addition, the robustness of the fault diagnostic method with respect to normal engine health degradation is enhanced by adaptive thresholds and adaptive approximation techniques, hence accurate diagnostic performance is maintained while the engine continues to degrade over its lifetime. Some representative simulation results are given to show the effectiveness of the robust nonlinear FDI method.
Keywords
adaptive estimation; aerospace engines; aircraft; fault diagnosis; nonlinear estimation; NASA; fault detection and isolation; general FDI architecture; nonlinear adaptive estimation; nonlinear aircraft engine model; robust fault diagnosis; Adaptation models; Aircraft propulsion; Degradation; Engines; Fault detection; Mathematical model; Uncertainty; Adaptive approximation; aircraft engines; fault detection; fault isolation; nonlinear adaptive estimators;
fLanguage
English
Journal_Title
Control Systems Technology, IEEE Transactions on
Publisher
ieee
ISSN
1063-6536
Type
jour
DOI
10.1109/TCST.2012.2187057
Filename
6172534
Link To Document