DocumentCode :
695815
Title :
Modelling and identification of MIMO nonlinear systems by TS fuzzy application to laboratory quadruple-tank process
Author :
El Hajjaji, A. ; Chadli, Mohamed
Author_Institution :
Lab. de Modelisation, Univ. de Piucardie Jules Verne, Amiens, France
fYear :
2009
fDate :
23-26 Aug. 2009
Firstpage :
365
Lastpage :
370
Abstract :
This paper presents a method to identify the parameters of continuous and discrete MIMO Takagi-Sugeno (TS) fuzzy models. The proposed method combines the Levenberg/Marquadt (LM) optimisation algorithm and least squares (LS) method. The LM algorithm is used to estimate the Gaussian membership function parameters whereas the parameters of linear local models is determined using a LS algorithm. To illustrate the effectiveness of the algorithm, an application to a laboratory quadruple-tank process is presented.
Keywords :
Gaussian processes; MIMO systems; continuous systems; discrete systems; fuzzy control; least squares approximations; nonlinear control systems; optimisation; parameter estimation; Gaussian membership function parameter estimation; LM optimisation algorithm; LS method; Levenberg-Marquadt optimisation algorithm; MIMO nonlinear systems; TS fuzzy application; continuous MIMO Takagi-Sugeno fuzzy models; discrete MIMO Takagi-Sugeno fuzzy models; laboratory quadruple-tank process; least squares method; linear local models; parameter identification; Analytical models; Equations; Laboratories; MIMO; Mathematical model; Nonlinear systems; Observers;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (ECC), 2009 European
Conference_Location :
Budapest
Print_ISBN :
978-3-9524173-9-3
Type :
conf
Filename :
7074429
Link To Document :
بازگشت