DocumentCode :
695831
Title :
Separation methods for dynamic errors-in-variables system identification
Author :
Hunyadi, Levente ; Vajk, Istvan
Author_Institution :
Dept. of Autom. & Appl. Inf., Budapest Univ. of Technol. & Econ., Budapest, Hungary
fYear :
2009
fDate :
23-26 Aug. 2009
Firstpage :
460
Lastpage :
465
Abstract :
Unlike standard output error models, both input and output observations of errors-in-variables systems are corrupted with noise. As practical applications often fall into the errors-in-variables category, estimation methods that can simultaneously derive model and noise parameters are of particular interest. In this paper, we explore separation mechanisms applied on the combined input and output observation matrix to partition observations into two sets, after which it is possible to perform parameter estimation over the individual sets, and the estimates may, in turn, be compared. Minimizing the distance between parameter estimates, it is shown that we may infer a noise structure. Once a noise structure estimate is at hand, a maximum likelihood estimation may yield model parameter estimates.
Keywords :
identification; matrix algebra; maximum likelihood estimation; combined input and output observation matrix; dynamic errors-in-variables system identification; maximum likelihood estimation; separation methods; Biological system modeling; Covariance matrices; Frequency-domain analysis; Noise; Time-domain analysis; Vectors; dynamic linear systems; errors-in-variables; model and noise parameter estimation; time and frequency domain data separation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (ECC), 2009 European
Conference_Location :
Budapest
Print_ISBN :
978-3-9524173-9-3
Type :
conf
Filename :
7074445
Link To Document :
بازگشت