• DocumentCode
    695906
  • Title

    Optimizing the convergence of data-based controller tuning

  • Author

    Eckhard, Diego ; Sanfelice Bazanella, Alexandre

  • Author_Institution
    Dept. of Electr. Eng., Univ. Fed. do Rio Grande do Sul, Porto Alegre, Brazil
  • fYear
    2009
  • fDate
    23-26 Aug. 2009
  • Firstpage
    910
  • Lastpage
    915
  • Abstract
    Data-based control design methods most often consist of iterative adjustment of the controller´s parameters towards the parameter values which minimize an H2 performance criterion. Typically, batches of input-output data collected from the system are used to feed directly a gradient descent optimization - no process model is used. The convergence to the global minimum of the performance criterion depends on the initial controller parameters and on the step size of each iteration. This paper discusses these issues and provides a method for choosing the step size to ensure convergence to the global minimum utilizing the lowest possible number of iterations.
  • Keywords
    control system synthesis; convergence of numerical methods; gradient methods; control design methods; convergence; data-based controller tuning; global minimum; gradient descent optimization; initial controller parameters; input-output data; iterative adjustment; parameter values; performance criterion; step size; Computational modeling; Control design; Convergence; Cost function; Mathematical model; Tuning;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Conference (ECC), 2009 European
  • Conference_Location
    Budapest
  • Print_ISBN
    978-3-9524173-9-3
  • Type

    conf

  • Filename
    7074520