Title :
Closed-loop subspace Predictive Control for Linear Parameter Varying systems (ii) - a supervisory and robust approach
Author :
Kulcsar, B. ; Dong, J. ; Verhaegen, M.
Author_Institution :
Delft Center for Syst. & Control, Tech. Univ. of Delft, Delft, Netherlands
Abstract :
The paper explores the advantage of Subspace Predictive Control for Linear Parameter Varying systems (SPC LPV) in supervisory and in robust control scheme. Closed-loop subspace identification technique is used to identify the I/O LPV predictor for optimal control application. This type of the SPC LPV is a data driven approach. The predictor is augmented with the a-priori known and primary-loop controller information. Hence, instead of replacing the existing controller in the loop, a supervisory SPC LPV is proposed in the paper. Moreover, robust extension of the nominal and optimal SPC LPV is formulated taking the worst case future scheduling parameter variation into account. The application of the proposed control schemes on a nonlinear DC motor illustrates the supervisory and the robust nature of the SPC LPV.
Keywords :
DC motors; closed loop systems; identification; linear parameter varying systems; optimal control; predictive control; robust control; I-O LPV predictor; SPC; closed-loop subspace predictive control; data driven approach; identification technique; linear parameter varying systems; nominal LPV; nonlinear DC motor; optimal control application; primary-loop controller information; robust control scheme; robust extension; supervisory control scheme; worst case future scheduling parameter variation; DC motors; Numerical models; Observers; Optimization; Predictive control; Predictive models; Robustness; Linear Parameter Varying systems; Subspace Predictive Control; optimal predictive control; robustness;
Conference_Titel :
Control Conference (ECC), 2009 European
Conference_Location :
Budapest
Print_ISBN :
978-3-9524173-9-3