• DocumentCode
    6970
  • Title

    Integration of Segmentation Techniques for Classification of Hyperspectral Images

  • Author

    Ghamisi, Pedram ; Couceiro, Micael S. ; Fauvel, M. ; Atli Benediktsson, Jon

  • Author_Institution
    Fac. of Electr. & Comput. Eng., Univ. of Iceland, Reykjavik, Iceland
  • Volume
    11
  • Issue
    1
  • fYear
    2014
  • fDate
    Jan. 2014
  • Firstpage
    342
  • Lastpage
    346
  • Abstract
    A new spectral-spatial method for classification of hyperspectral images is introduced. The proposed approach is based on two segmentation methods, fractional-order Darwinian particle swarm optimization and mean shift segmentation. The output of these two methods is classified by support vector machines. Experimental results indicate that the integration of the two segmentation methods can overcome the drawbacks of each other and increase the overall accuracy in classification.
  • Keywords
    geophysical image processing; hyperspectral imaging; image classification; image segmentation; particle swarm optimisation; support vector machines; fractional-order Darwinian particle swarm optimization; hyperspectral image classification; hyperspectral image segmentation technique; mean shift segmentation; spectral-spatial method; support vector machine; Hyperspectral image analysis; mean shift segmentation; multilevel segmentation;
  • fLanguage
    English
  • Journal_Title
    Geoscience and Remote Sensing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1545-598X
  • Type

    jour

  • DOI
    10.1109/LGRS.2013.2257675
  • Filename
    6545298