• DocumentCode
    697478
  • Title

    State space and polynomial matrix parametrization of minimal convolutional encoders

  • Author

    Fornasini, E. ; Pinto, R.

  • Author_Institution
    Dipt. di Elettron. e Inf., Univ. di Padova, Padua, Italy
  • fYear
    2001
  • fDate
    4-7 Sept. 2001
  • Firstpage
    2790
  • Lastpage
    2795
  • Abstract
    The paper discusses the possibility of characterizing some important properties of convolutional codes and its encoders and syndrome formers by means of matrix fraction descriptions and state space models. A complete parametrization is then provided for all minimal encoders and minimal syndrome formers of a given code. Finally state feedback and static precompensation (resp.output injection and postcompensation) allow to synthesize all minimal encoders (resp. minimal syndrome formers), when a minimal one is available.
  • Keywords
    compensation; convolution; polynomial matrices; state feedback; state-space methods; matrix fraction description; minimal convolutional encoders; polynomial matrix parametrization; state feedback; state space model; state space parametrization; static precompensation; Convolution; Convolutional codes; Europe; Mathematical model; Polynomials; State feedback; Trajectory; Algebraic system theory; convolutional codes; multivariable control; sampled data systems; signal processing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Conference (ECC), 2001 European
  • Conference_Location
    Porto
  • Print_ISBN
    978-3-9524173-6-2
  • Type

    conf

  • Filename
    7076353