DocumentCode :
697630
Title :
Identification of multivariable LPV state space systems by local gradient search
Author :
Verdult, Vincent ; Verhaegen, Michel
Author_Institution :
Fac. of Appl. Phys., Univ. of Twente, Enschede, Netherlands
fYear :
2001
fDate :
4-7 Sept. 2001
Firstpage :
3675
Lastpage :
3680
Abstract :
We present an identification method for multivariable linear parameter-varying (LPV) state space systems that is based on a local parameterization of the system and a gradient search in the resulting parameter space. Both the output error and prediction error identification problems are discussed. Because the method involves solving a nonlinear optimization problem, it is of paramount importance to have a good initial estimate of the model. We show that a recently developed subspace identification method for LPV systems can be used for determining such an initial model.
Keywords :
linear systems; multivariable control systems; nonlinear programming; parameter estimation; search problems; linear parameter-varying systems; local gradient search; local parameterization; multivariable LPV state space systems; nonlinear optimization problem; output error identification problems; prediction error identification problems; Cost function; Equations; Europe; Mathematical model; Noise; Predictive models; Identification of nonlinear systems; identification methods; time-varying and periodic systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (ECC), 2001 European
Conference_Location :
Porto
Print_ISBN :
978-3-9524173-6-2
Type :
conf
Filename :
7076505
Link To Document :
بازگشت