DocumentCode
698113
Title
A new robust estimation method for short-term load forecasting
Author
CHAKHCHOUKH, YACINE
Author_Institution
Lab. des signaux et Syst., Univ. Paris-Sud XI, Gif-sur-Yvette, France
fYear
2009
fDate
24-28 Aug. 2009
Firstpage
2489
Lastpage
2493
Abstract
This paper presents a new robust method to estimate the parameters of ARIMA models. This method makes use of the minimum Hellinger distance estimator (MHDE) together with a robust filter cleaner able to reject a large fraction of outliers, and a Gaussian maximum likelihood estimation which handles missing values. The main advantages of the procedure are its easiness, robustness, high efficiency and practical execution. Its effectiveness is demonstrated on Monte Carlo simulations and an example of the forecasting of the French daily electricity consumptions.
Keywords
Gaussian processes; Monte Carlo methods; demand side management; load forecasting; maximum likelihood estimation; power consumption; power system parameter estimation; ARIMA models; French daily electricity consumptions forecasting; Gaussian maximum likelihood estimation; MHDE; Monte Carlo simulations; filter cleaner; minimum Hellinger distance estimator; parameter estimation; robust estimation method; short-term load forecasting; Abstracts; Filtering; Forecasting; Lead; Robustness; ARIMA models; Hellinger distance; Robustness; load forecasting; outliers; time series;
fLanguage
English
Publisher
ieee
Conference_Titel
Signal Processing Conference, 2009 17th European
Conference_Location
Glasgow
Print_ISBN
978-161-7388-76-7
Type
conf
Filename
7077688
Link To Document