• DocumentCode
    698113
  • Title

    A new robust estimation method for short-term load forecasting

  • Author

    CHAKHCHOUKH, YACINE

  • Author_Institution
    Lab. des signaux et Syst., Univ. Paris-Sud XI, Gif-sur-Yvette, France
  • fYear
    2009
  • fDate
    24-28 Aug. 2009
  • Firstpage
    2489
  • Lastpage
    2493
  • Abstract
    This paper presents a new robust method to estimate the parameters of ARIMA models. This method makes use of the minimum Hellinger distance estimator (MHDE) together with a robust filter cleaner able to reject a large fraction of outliers, and a Gaussian maximum likelihood estimation which handles missing values. The main advantages of the procedure are its easiness, robustness, high efficiency and practical execution. Its effectiveness is demonstrated on Monte Carlo simulations and an example of the forecasting of the French daily electricity consumptions.
  • Keywords
    Gaussian processes; Monte Carlo methods; demand side management; load forecasting; maximum likelihood estimation; power consumption; power system parameter estimation; ARIMA models; French daily electricity consumptions forecasting; Gaussian maximum likelihood estimation; MHDE; Monte Carlo simulations; filter cleaner; minimum Hellinger distance estimator; parameter estimation; robust estimation method; short-term load forecasting; Abstracts; Filtering; Forecasting; Lead; Robustness; ARIMA models; Hellinger distance; Robustness; load forecasting; outliers; time series;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing Conference, 2009 17th European
  • Conference_Location
    Glasgow
  • Print_ISBN
    978-161-7388-76-7
  • Type

    conf

  • Filename
    7077688