DocumentCode :
698652
Title :
Bayesian inference of intravoxel structure in diffusion MRI
Author :
Haifang Ge ; Fitzgerald, William J. ; Green, Hadrian A. L.
Author_Institution :
Eng. Dept., Cambridge Univ., Cambridge, UK
fYear :
2005
fDate :
4-8 Sept. 2005
Firstpage :
1
Lastpage :
4
Abstract :
While diffusion tensor imaging (DTI) provides a powerful tool to reconstruct neural pathways in vivo, the standard diffusion tensor model is limited to resolve a single fiber direction within each voxel. To overcome this difficulty, high angular resolution diffusion imaging (HARDI) has recently been proposed to investigate intravoxel fiber heterogeneity. In this paper we propose a novel method for mixture model decomposition of the HARDI signal based on Bayesian inference and trans-dimensional Markov Chain simulation. The method is applied to both synthetic and real data.
Keywords :
Markov processes; belief networks; image processing; inference mechanisms; magnetic resonance imaging; Bayesian inference; DTI; HARDI signal; diffusion MRI; diffusion tensor imaging; high angular resolution diffusion imaging; intravoxel fiber heterogeneity; intravoxel structure; mixture model decomposition; neural pathways; single fiber direction; standard diffusion tensor model; transdimensional Markov chain simulation; Bayes methods; Diffusion tensor imaging; Estimation; Image resolution; Tensile stress;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference, 2005 13th European
Conference_Location :
Antalya
Print_ISBN :
978-160-4238-21-1
Type :
conf
Filename :
7078244
Link To Document :
بازگشت