• DocumentCode
    698699
  • Title

    Fast maximum-likelihood sea clutter parameter learning from the output of the envelope detector

  • Author

    Sari, Faruk ; Sari, Nursen ; Mili, Lamine

  • Author_Institution
    TUBITAK, MRC, Gebze, Turkey
  • fYear
    2005
  • fDate
    4-8 Sept. 2005
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    We develop a fast learning technique to estimate the background statistics parameters from the output of the envelope detector, the inputs of which are multi-component Gaussian Mixture (GM) distributions. We use Fisher Scoring (FS) algorithm, which is Newton based and has fast convergence properties, to solve the log-likelihood minimization problem. Experimental results are given on real radar clutter data.
  • Keywords
    Gaussian distribution; Gaussian processes; learning (artificial intelligence); maximum likelihood detection; mixture models; radar clutter; radar detection; FS algorithm; GM distributions; background statistics parameters; envelope detector; fast convergence properties; fast learning technique; fast maximum-likelihood sea clutter parameter learning; fisher scoring algorithm; log-likelihood minimization problem; multicomponent Gaussian mixture distributions; radar clutter data; Clutter; Envelope detectors; Maximum likelihood estimation; Optimization; Radar; Sea state;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing Conference, 2005 13th European
  • Conference_Location
    Antalya
  • Print_ISBN
    978-160-4238-21-1
  • Type

    conf

  • Filename
    7078292