DocumentCode :
699142
Title :
Nonlinear channel equalization with maximum covariance initialized cascade-correlation learning
Author :
Kantsila, Arto
Author_Institution :
Inst. of Digital & Comput. Syst., Tampere Univ. of Technol., Tampere, Finland
fYear :
2004
fDate :
6-10 Sept. 2004
Firstpage :
437
Lastpage :
440
Abstract :
In this paper we have studied maximum covariance initialization scheme and cascade-correlation learning to improve the performance of a multilayer perceptron network equalizer in nonlinear channel environment. The initialization scheme enables faster convergence and the cascade-correlation learning provides adaptive network size. These methods are compared to a traditional MLP network equalizer and to a simple linear equalizer.
Keywords :
convergence; covariance analysis; equalisers; learning (artificial intelligence); multilayer perceptrons; MLP network equalizer; adaptive network; cascade-correlation learning; convergence; linear equalizer; maximum covariance initialization; multilayer perceptron network equalizer; nonlinear channel equalization; Abstracts; Bit error rate; Intersymbol interference;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference, 2004 12th European
Conference_Location :
Vienna
Print_ISBN :
978-320-0001-65-7
Type :
conf
Filename :
7079672
Link To Document :
بازگشت