DocumentCode :
699174
Title :
Boosting: From data to hardware using automatic implementation tool
Author :
Miteran, J. ; Matas, J. ; Dubois, J. ; Bourennane, E.
Author_Institution :
Le2i - FRE, Univ. de Bourgogne, Dijon, France
fYear :
2004
fDate :
6-10 Sept. 2004
Firstpage :
1333
Lastpage :
1336
Abstract :
We propose a method of automatic hardware implementation of a decision rule based on the Adaboost algorithm. We review the principles of the classification method and we evaluate its hardware implementation cost in term of FPGA´s slice, using different weak classifiers based on the general concept of hyperrectangle. We show how to combine the weak classifiers in order to find an efficient trade-off between classification performances and hardware implementation cost. We present results obtained using examples coming from UCI databases.
Keywords :
field programmable gate arrays; image segmentation; learning (artificial intelligence); Adaboost algorithm; FPGA; UCI; automatic hardware implementation; automatic implementation tool; boosting; decision rule; hyperrectangle; Abstracts; Adders; Boosting; Databases; Standards; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference, 2004 12th European
Conference_Location :
Vienna
Print_ISBN :
978-320-0001-65-7
Type :
conf
Filename :
7079704
Link To Document :
بازگشت