DocumentCode :
699189
Title :
Autoregressive order selection in missing data problems
Author :
Broersen, P.M.T. ; Bos, R.
Author_Institution :
Dept. of Multi Scale Phys., Delft Univ. of Technol., Delft, Netherlands
fYear :
2004
fDate :
6-10 Sept. 2004
Firstpage :
2159
Lastpage :
2162
Abstract :
Maximum likelihood presents a useful solution for the estimation of the parameters of time series models when data are missing. The highest autoregressive (AR) model order that can be computed without numerical problems is limited and depends on the missing fraction. Order selection will be necessary to obtain a good AR model. The best criterion to select an AR order with an accurate spectral estimate is slightly different from the criterion for contiguous data. The penalty for the selection of additional parameters depends on the missing fraction. The resulting maximum likelihood algorithm can give very accurate spectra, sometimes even if less than 1% of the data remains.
Keywords :
autoregressive processes; maximum likelihood estimation; spectral analysis; time series; AR model; autoregressive order selection; maximum likelihood estimation; missing data problems; parameter estimation; spectral estimate; time series models; Abstracts; Optimization; Robustness; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference, 2004 12th European
Conference_Location :
Vienna
Print_ISBN :
978-320-0001-65-7
Type :
conf
Filename :
7079719
Link To Document :
بازگشت