DocumentCode
700158
Title
Parameter estimation in total variation blind deconvolution
Author
Derin Babacan, S. ; Molina, Rafael ; Katsaggelos, Aggelos K.
Author_Institution
Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA
fYear
2008
fDate
25-29 Aug. 2008
Firstpage
1
Lastpage
5
Abstract
In this paper we present a methodology for parameter estimation in total variation (TV) blind deconvolution. By formulating the problem in a Bayesian framework, the unknown image, blur and the model parameters are simultaneously estimated. The resulting algorithms provide approximations to the posterior distributions of the unknowns by utilizing variational distribution approximations. We show that some of the current approaches towards TV-based blind deconvolution are special cases of our formulation. Experimental results are provided to demonstrate the performance of the algorithms.
Keywords
convolution; deconvolution; image processing; parameter estimation; Bayesian framework; TV-based blind deconvolution; parameter estimation; posterior distributions; total variation blind deconvolution; Approximation algorithms; Approximation methods; Bayes methods; Deconvolution; Image restoration; Signal processing algorithms; TV;
fLanguage
English
Publisher
ieee
Conference_Titel
Signal Processing Conference, 2008 16th European
Conference_Location
Lausanne
ISSN
2219-5491
Type
conf
Filename
7080690
Link To Document