• DocumentCode
    700158
  • Title

    Parameter estimation in total variation blind deconvolution

  • Author

    Derin Babacan, S. ; Molina, Rafael ; Katsaggelos, Aggelos K.

  • Author_Institution
    Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA
  • fYear
    2008
  • fDate
    25-29 Aug. 2008
  • Firstpage
    1
  • Lastpage
    5
  • Abstract
    In this paper we present a methodology for parameter estimation in total variation (TV) blind deconvolution. By formulating the problem in a Bayesian framework, the unknown image, blur and the model parameters are simultaneously estimated. The resulting algorithms provide approximations to the posterior distributions of the unknowns by utilizing variational distribution approximations. We show that some of the current approaches towards TV-based blind deconvolution are special cases of our formulation. Experimental results are provided to demonstrate the performance of the algorithms.
  • Keywords
    convolution; deconvolution; image processing; parameter estimation; Bayesian framework; TV-based blind deconvolution; parameter estimation; posterior distributions; total variation blind deconvolution; Approximation algorithms; Approximation methods; Bayes methods; Deconvolution; Image restoration; Signal processing algorithms; TV;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing Conference, 2008 16th European
  • Conference_Location
    Lausanne
  • ISSN
    2219-5491
  • Type

    conf

  • Filename
    7080690