DocumentCode :
700757
Title :
Bounds for robust eigenvalue assignment in a sector
Author :
Bachelier, O. ; Pradin, B. ; Chouaib, I.
Author_Institution :
LAAS, Toulouse, France
fYear :
1997
fDate :
1-7 July 1997
Firstpage :
1933
Lastpage :
1938
Abstract :
This paper deals with the research of robustness bounds for system matrices of linear state-space models. These bounds on unstructured uncertainties norm guarantee that the eigenvalues of the perturbed matrix keep on lying in a sector. Several bounds, obtained thanks to different approaches relevant whether to Lyapunov´s theory or to the notion of logarithmic norm, are given. Some equivalences and connections between the various bounds are highlighted.
Keywords :
Lyapunov methods; eigenvalues and eigenfunctions; matrix algebra; perturbation techniques; robust control; state-space methods; uncertain systems; Lyapunov theory; linear state-space models; logarithmic norm; perturbed matrix eigenvalues; robust eigenvalue assignment; robustness bounds; system matrices; unstructured uncertainties norm; Control theory; Eigenvalues and eigenfunctions; Linear systems; Numerical stability; Robustness; Symmetric matrices; Uncertainty; Performance-Robustness; Robustness bounds; Root-clustering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (ECC), 1997 European
Conference_Location :
Brussels
Print_ISBN :
978-3-9524269-0-6
Type :
conf
Filename :
7082387
Link To Document :
بازگشت