DocumentCode :
700958
Title :
A new method for the Hamiltonian eigenvalue problem
Author :
Benner, Peter ; Mehrmann, Volker ; Hongguo Xu
Author_Institution :
Fak. fur Math., Tech. Univ. Chemnitz-Zwickau, Chemnitz, Germany
fYear :
1997
fDate :
1-7 July 1997
Firstpage :
3131
Lastpage :
3135
Abstract :
A new method is presented for the numerical computation of the eigenvalues of real Hamiltonian matrices. The method is strongly backward stable, i.e. it is numerically backward stable and preserves the Hamiltonian structure. It is closely related to the square reduced method of Van Loan, but in contrast to that method which may suffer from a loss of accuracy of order √ε. where ε is the machine precision, the new method computes the eigenvalues to full possible accuracy.
Keywords :
matrix algebra; numerical analysis; Hamiltonian eigenvalue problem; Hamiltonian structure; machine precision; numerical computation; numerically backward stable system; real Hamiltonian matrices; square reduced method; strongly-backward stable method; Accuracy; Computational efficiency; Eigenvalues and eigenfunctions; Error analysis; Matrix decomposition; Riccati equations; Standards; Linear Systems; Numerical Methods; Optimal Control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (ECC), 1997 European
Conference_Location :
Brussels
Print_ISBN :
978-3-9524269-0-6
Type :
conf
Filename :
7082590
Link To Document :
بازگشت