DocumentCode :
701161
Title :
MSE-based regularization approach to rank determination in CLS and TLS estimation
Author :
Kagiwada, H. ; Aoki, Y. ; Xin, J. ; Sano, A.
Author_Institution :
Department of Electrical Engineering, Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan
fYear :
1996
fDate :
10-13 Sept. 1996
Firstpage :
1
Lastpage :
4
Abstract :
The corrected least squares (CLS) approach using an over-determined model is investigated to decide the number of sinusoids in additive white noise. Like the total least squares (TLS) approach, the CLS estimation is different from the ordinary least squares (LS) method in that the noise variance is subtracted from the diagonal elements of the correlation matrix of the noisy observed data. Therefore the inversion of the resultant matrix becomes ill-conditioned and then adequate truncation of the eigenvalue decomposition (EVD) should be done. This paper clarifies how to simultaneously estimate the noise variance and truncate the eigenvalues, since they are mutually dependent. By introducing a multiple number of regularization parameters and determining them to minimize the MSE of the model parameters, we can give an optimal scheme for the truncation of eigenvalues. Furthermore, an iterative algorithm using only observed data is also clarified.
Keywords :
Correlation; Eigenvalues and eigenfunctions; Estimation; Iterative methods; Least squares approximations; Noise; Noise measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
European Signal Processing Conference, 1996. EUSIPCO 1996. 8th
Conference_Location :
Trieste, Italy
Print_ISBN :
978-888-6179-83-6
Type :
conf
Filename :
7082886
Link To Document :
بازگشت