Title :
Optimization of a space vector control using MOAM algorithm and extended Kalman filter
Author :
Mendoza, Antonio ; Saludes, Sergio ; Arnanz, Roberto ; Pacheco, Miguel Angel ; Peran, J.R
Author_Institution :
C.A.R.T.I.F. (Centro de Automatización, Robótica y Tecnologías de la Información y Fabricación) Parque Tecnológico de Boecillo. Parcela 205 47151 Boecillo Valladolid. (Spain)
Abstract :
This paper proposes a new application of parameter estimation for induction motors. Induction motor is described by non-linear differential equations and an Extended Kalman Filter (EKF) estimates three parameters needed for the control (rotor resistance, stator resistance and magnetising inductance). A Modified Random Optimisation Method, MOAM, is used to optimize the covariance matrix in Extended Kalman Filter, rotor and stator autoinductances, friction factor and moment of inertia. It is used to achieve the best performance in the Vector control. Simulation studies on a field oriented controller (FOC), under different variations on the parameter model, and experiments with 5.5 kW motor are presented.
Keywords :
Induction motors; Kalman filters; Mathematical model; Parameter estimation; Rotors; Stators; AC motors; Extended Kalman Filter; FOC; Moam algorithm. Parameter identification;
Conference_Titel :
European Control Conference (ECC), 2003
Conference_Location :
Cambridge, UK
Print_ISBN :
978-3-9524173-7-9