Title :
SyLVaaS: System Level Formal Verification as a Service
Author :
Mancini, Toni ; Mari, Federico ; Massini, Annalisa ; Melatti, Igor ; Tronci, Enrico
Author_Institution :
Sapienza Univ. of Rome, Rome, Italy
Abstract :
The goal of System Level Formal Verification is to show system correctness notwithstanding uncontrollable events (disturbances), as for example faults, variation in system parameters, external inputs, etc. This may be achieved with an exhaustive Hardware In the Loop Simulation based approach, by considering all relevant scenarios in the System Under Verification (SUV) operational environment. In this paper, we present SyLVaaS, a Web-based tool enabling Verification as a Service (VaaS). SyLVaaS implements an assume-guarantee approach to the verification problem outlined above. SyLVaaS takes as input a high-level model defining the SUV operational environment and computes, using parallel algorithms deployed in a cluster infrastructure, a set of highly optimised simulation campaigns, which can be executed in an embarrassingly parallel fashion on a set of Simulink instances, using a platform independent Simulink driver downloadable from the SyLVaaS Web site. As the actual simulation is carried out at the user premises (e.g., in a private cluster), SyLVaaS allows full Intellectual Property protection on the SUV model and the user verification flow. The simulation campaigns computed by SyLVaaS randomise the verification order of operational scenarios and this enables, at anytime during the parallel simulation activity, the estimation of the completion time and the computation of an upper bound to the Omission Probability, i.e., the probability that there is a yet-to-be-simulated operational scenario which violates the property under verification. This information supports graceful degradation in the verification activity. We show effectiveness of the SyLVaaS algorithms and infrastructure by evaluating the system on industry-scale input related to the verification of the Fuel Control System (FCS) model in the Simulink distribution.
Keywords :
Internet; cloud computing; formal verification; parallel algorithms; FCS model; SUV model; SUV operational environment; Simulink distribution; SyLVaaS algorithms; Web-based tool; assume-guarantee approach; cluster infrastructure; fuel control system; hardware in loop simulation based approach; intellectual property protection; parallel algorithms; parallel simulation activity; platform independent Simulink driver; system level formal verification as a service; system under verification operational environment; user verification flow; Clustering algorithms; Computational modeling; Load modeling; Mathematical model; Model checking; Monitoring; Software packages; Random Exhaustive Hardware In The Loop Simulation; Software as a Service; System Level Formal Verification;
Conference_Titel :
Parallel, Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro International Conference on
Conference_Location :
Turku
DOI :
10.1109/PDP.2015.119