• DocumentCode
    70486
  • Title

    Bromomethane Decomposition Using a Pulsed Dielectric Barrier Discharge

  • Author

    Kuroki, Tomoyuki ; Oishi, Tsukasa ; Yamamoto, Takayuki ; Okubo, Masaaki

  • Author_Institution
    Dept. of Mech. Eng., Osaka Prefecture Univ., Sakai, Japan
  • Volume
    49
  • Issue
    1
  • fYear
    2013
  • fDate
    Jan.-Feb. 2013
  • Firstpage
    293
  • Lastpage
    297
  • Abstract
    The decomposition of bromomethane (CH3Br), which is an ozone-depleting substance, is carried out using a pulsed dielectric barrier discharge. To accomplish this, a plasma reactor comprising a stainless discharge wire electrode and a quartz cylinder wrapped with a copper mesh as the ground electrode is employed. This reactor is energized by a pulsed high-voltage power supply using an insulated-gate bipolar transistor. The effects of humidity, flow rate, and initial CH3Br concentration on CH3 Br decomposition are investigated. The relative humidity is found to slightly affect the CH3Br decomposition. Additionally, the CH3Br decomposition efficiency is found to decrease with increasing gas flow rate; however, the amount of decomposed CH3Br increases with gas flow rate. More than 95% CH3Br decomposition efficiency is achieved at a gas flow rate of 1 L/min and initial CH3Br concentrations of 1000, 5000, and 10 000 ppm. Gas chromatography/mass spectroscopy analysis shows that approximately 95% of the decomposed CH3Br is converted to HBr, which can be easily removed using an alkaline scrubber. The energy efficiency of the CH3Br decomposition increases with the initial concentration at the same specific energy. In addition, the specific energy decreases when the energy efficiency is maintained by increasing the gas flow rate.
  • Keywords
    chromatography; discharges (electric); electrodes; energy conservation; insulated gate bipolar transistors; mass spectroscopy; pulsed power supplies; pyrolysis; CH3Br; alkaline scrubber; bromomethane decomposition; copper mesh; energy efficiency; gas chromatography analysis; gas flow rate; ground electrode; insulated-gate bipolar transistor; mass spectroscopy analysis; ozone-depleting substance; plasma reactor; pulsed dielectric barrier discharge; pulsed high-voltage power supply; quartz cylinder; relative humidity effect; stainless discharge wire electrode; thermal decomposition; Dielectrics; Discharges (electric); Energy efficiency; Fluid flow; Humidity; Inductors; Plasmas; Bromomethane; decomposition; fumigation; nonthermal plasma; pulsed dielectric barrier discharge (DBD);
  • fLanguage
    English
  • Journal_Title
    Industry Applications, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0093-9994
  • Type

    jour

  • DOI
    10.1109/TIA.2012.2228612
  • Filename
    6355653