DocumentCode :
705058
Title :
Application of fractional calculus to the analysis of Laplace transformed data
Author :
Venkataramanan, Lalitha ; Habashy, Tarek M. ; Freed, Denise E.
Author_Institution :
Schlumberger-Doll Res., Cambridge, MA, USA
fYear :
2010
fDate :
23-27 Aug. 2010
Firstpage :
1150
Lastpage :
1153
Abstract :
This paper describes a novel method using fractional calculus to estimate non-integer moments of a random variable from the measured Laplace transform of its probability density function. We demonstrate that the ω-th moment (ω ϵ R) of the random variable can be directly obtained by a linear transformation of the data. When w > 0, computation of moments corresponds to fractional integration of the data. When ω ≤ 0, computation of moments corresponds to fractional differentiation.
Keywords :
Laplace transforms; differentiation; integration; method of moments; probability; random processes; Laplace transformed data; fractional calculus application; fractional differentiation; noninteger moment estimation; probability density function; Density functional theory; Fractional calculus; Laplace equations; Noise; Nuclear magnetic resonance; Random variables; Rocks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference, 2010 18th European
Conference_Location :
Aalborg
ISSN :
2219-5491
Type :
conf
Filename :
7096331
Link To Document :
بازگشت