DocumentCode :
705201
Title :
Bayesian pursuit algorithms
Author :
Herzet, Cedue ; Dremeau, Angelique
Author_Institution :
INRIA Centre Rennes - Bretagne Atlantique, Campus Univ. de Beaulieu, Rennes, France
fYear :
2010
fDate :
23-27 Aug. 2010
Firstpage :
1474
Lastpage :
1478
Abstract :
This paper addresses the sparse representation (SR) problem within a general Bayesian framework. We show that the Lagrangian formulation of the standard SR problem, i.e., x* = argminx{||y - Dx||22 +λ||X||0}, can be regarded as a limit case of a general maximum a posteriori (MAP) problem involving Bernoulli-Gaussian variables. We then propose different tractable implementations of this MAP problem and explain several well-known pursuit algorithms (e.g., MP, OMP, StOMP, CoSaMP, SP) as particular cases of the proposed Bayesian formulation.
Keywords :
Gaussian processes; belief networks; maximum likelihood estimation; signal representation; Bayesian pursuit algorithms; Bernoulli-Gaussian variables; Lagrangian formulation; MAP problem; general maximum a posteriori problem; sparse representation problem; standard SR problem; Bayes methods; Estimation; Matching pursuit algorithms; Noise; Pursuit algorithms; Standards;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference, 2010 18th European
Conference_Location :
Aalborg
ISSN :
2219-5491
Type :
conf
Filename :
7096474
Link To Document :
بازگشت