Title :
Structural decomposition and finite-dimensional stabilization of fractional systems
Author_Institution :
Lab. des Signaux & Syst., Gif-sur-Yvette, France
fDate :
Aug. 31 1999-Sept. 3 1999
Abstract :
Fractional linear systems can be decomposed into integer-order dynamics, pure fractional integrators. and stable long-memory dynamics. For the latter. estimations in the time and frequency domains are given. The decomposition allows to reduce the control of a fractional linear system to a robust control problem for the integer-order part. In particular, the controller will be Finite-dimensional. The method is illustrated by a multivariable example.
Keywords :
linear systems; multivariable control systems; robust control; finite-dimensional controller; finite-dimensional stabilization; fractional linear system; frequency domain; integer-order dynamics; multivariable example; pure fractional integrators; robust control; stable long-memory dynamics; system decomposition; time domain; Europe; Heating; Linear systems; Output feedback; Polynomials; Thermal stability; Transfer functions; Fractional systems; H∞; infinite dimensional systems; stabilization;
Conference_Titel :
Control Conference (ECC), 1999 European
Conference_Location :
Karlsruhe
Print_ISBN :
978-3-9524173-5-5