DocumentCode :
707078
Title :
Supervisory fault tolerant system using fuzzy multiple inference modelling
Author :
Lopez-Toribio, C.J. ; Patton, R.J. ; Daley, S.
Author_Institution :
Dept. of Electron. Eng., Univ. of Hull, Kingston upon Hull, UK
fYear :
1999
fDate :
Aug. 31 1999-Sept. 3 1999
Firstpage :
4381
Lastpage :
4386
Abstract :
This paper presents a novel approach to integrating quantitative and qualitative information in fault-diagnosis. This paper investigates the development of a supervisory control scheme for a non-linear system with qualitative tasks at the upper level and a lower level comprising quantitative model based non-linear control. A new quantitative approach for the stability of non-linear fuzzy inference systems using Takagi-Sugeno (T-S) fuzzy models is presented. The necessary conditions for the assignability of eigenvalues to a region in the s-plane and the necessary conditions to guarantee the joint stability of fuzzy models for combined T-S fuzzy observers and T-S fuzzy controllers together are derived.
Keywords :
eigenvalues and eigenfunctions; fault tolerant control; fuzzy control; fuzzy reasoning; nonlinear control systems; observers; stability; T-S fuzzy controller; T-S fuzzy observer; Takagi-Sugeno fuzzy model; eigenvalues assignability; fuzzy multiple inference modelling; necessary conditions; nonlinear fuzzy inference system; quantitative model based nonlinear control; s-plane; stability; supervisory control scheme; supervisory fault tolerant system; Asymptotic stability; Eigenvalues and eigenfunctions; Generators; Mathematical model; Observers; Stability analysis; Symmetric matrices; Fault-tolerant control; bilinear systems; fuzzy logic; induction motor; linear matrix inequalities;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (ECC), 1999 European
Conference_Location :
Karlsruhe
Print_ISBN :
978-3-9524173-5-5
Type :
conf
Filename :
7100023
Link To Document :
بازگشت