DocumentCode :
70785
Title :
How Correlations Influence Lasso Prediction
Author :
Hebiri, M. ; Lederer, Johannes
Author_Institution :
Univ. Paris-Est Marne-la-Vallee, Champs-sur-Marne, France
Volume :
59
Issue :
3
fYear :
2013
fDate :
Mar-13
Firstpage :
1846
Lastpage :
1854
Abstract :
We study how correlations in the design matrix influence Lasso prediction. First, we argue that the higher the correlations, the smaller the optimal tuning parameter. This implies in particular that the standard tuning parameters, that do not depend on the design matrix, are not favorable. Furthermore, we argue that Lasso prediction works well for any degree of correlations if suitable tuning parameters are chosen. We study these two subjects theoretically as well as with simulations.
Keywords :
eigenvalues and eigenfunctions; prediction theory; regression analysis; tuning; correlation influence Lasso prediction; design matrix; eigenvalue; optimal tuning parameter; Algorithm design and analysis; Correlation; Covariance matrix; Prediction algorithms; Standards; Tuning; Vectors; Correlations; Lars algorithm; Lasso; restricted eigenvalue; tuning parameter;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2012.2227680
Filename :
6355687
Link To Document :
بازگشت