Title :
Emissivity and Temperature Assessment Using a Maximum Entropy Estimator: Structure and Performance of the MaxEnTES Algorithm
Author :
Barducci, Alessandro ; Guzzi, Donatella ; Lastri, Cinzia ; Marcoionni, Paolo ; Nardino, Vanni ; Pippi, Ivan
Author_Institution :
Ist. di Fis. Appl. “Nello Carrara”, Florence, Italy
Abstract :
In this paper, we discuss the structure and performance of the maximum entropy temperature-emissivity separation (MaxEnTES) algorithm for assessing land temperature and emissivity from thermal infrared hyperspectral images. This procedure derives the emissivity spectrum and the temperature of the target adopting the maximum entropy (MaxEnt) estimation approach. The main advantage of the MaxEnt statistical inference is the absence of any external hypothesis, which is, instead, the main critical point characterizing any other temperature-emissivity separation (TES) algorithm. The MaxEnTES algorithm carries out the TES task adopting a modified version of the subgradient Shor´s r-algorithm adopted for numerical optimization of a MaxEnt objective function. For this purpose, we have utilized the C/C++ Solvopt code from the University of Gratz to develop a practical data processing implementation. In this paper, we discuss the mathematical structure of the MaxEnTES algorithm and analyze its performance in depth using numerical simulations and remote sensing Multispectral Infrared/Visible Imaging Spectrometer images. We show that the MaxEnTES algorithm provides improved accuracy for temperature and emissivity estimation, lowering the standard estimation error to a fraction of degree Kelvin. In agreement with previous investigations, we find that the estimation accuracy grows when increasing the number of available spectral channels. The systematic errors affecting the temperature estimates (e.g., bias) are thoroughly evaluated. We prove that the MaxEnTES algorithm retrieves the correct shape of the target emissivity spectrum even in presence of a significant temperature estimation error.
Keywords :
atmospheric spectra; atmospheric techniques; atmospheric thermodynamics; critical points; entropy; hyperspectral imaging; infrared spectrometers; land surface temperature; numerical analysis; remote sensing; C-C++ Solvopt code; MaxEnTES algorithm mathematical structure; MaxEnTES algorithm performance; MaxEnTES algorithm structure; MaxEnt estimation approach; MaxEnt objective function; MaxEnt statistical inference; TES algorithm; TES task; University of Gratz; available spectral channel number; degree Kelvin fraction; emissivity assessment; emissivity estimation accuracy; emissivity spectrum; external hypothesis; land emissivity assessment; land temperature assessment; main critical point characterization; maximum entropy estimation approach; maximum entropy estimator; maximum entropy temperature-emissivity separation algorithm; modified subgradient Shors r-algorithm version; multispectral infrared-visible imaging spectrometer image; numerical optimization; numerical simulation; practical data processing implementation development; remote sensing; standard estimation; systematic error; target emissivity spectrum correct shape; target temperature; temperature assessment; temperature estimation accuracy; temperature estimation error; temperature-emissivity separation; thermal infrared hyperspectral image; Entropy; Equations; Estimation; Information entropy; Land surface temperature; Temperature measurement; Atmospheric correction; MODTRAN; Multispectral Infrared/Visible Imaging Spectrometer (MIVIS); gray-body emissivity (GBE); information entropy; land surface temperature (LST); maximum entropy (MaxEnt); maximum entropy temperature–emissivity separation (MaxEnTES); maximum entropy temperature???emissivity separation (MaxEnTES); model emittance calculation (MEC); optimum band selection; probability density function (pdf); temperature–emissivity separation (TES); temperature???emissivity separation (TES); thermal infrared (TIR);
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
DOI :
10.1109/TGRS.2014.2327218