DocumentCode :
709892
Title :
A failure physics model for hardware Trojan detection based on frequency spectrum analysis
Author :
Chunhua He ; Bo Hou ; Liwei Wang ; Yunfei En ; Shaofeng Xie
Author_Institution :
Sci. & Technol. on Reliability Phys. & Applic. of Electron. Component Lab., Minist. of Ind. & Inf. Technol., Guangzhou, China
fYear :
2015
fDate :
19-23 April 2015
Abstract :
Hardware Trojan embedded by adversaries has emerged as a serious security threat. Until now, there is no a universal method for effective and accurate detection. Since traditional analysis approaches sometime seem helpless when the Trojan area is extremely tiny, this paper will focus on the novel detection method based on frequency spectrum analysis. Meanwhile, a failure physics model is presented and depicted in detail. A digital CORDIC IP core is adopted as a golden circuit, while a counter is utilized as a Trojan circuit. The automatic test platform is set up with Xilinx FPGA, LabVIEW software, and high precision oscilloscope. The power trace of the core power supply in FPGA is monitored and saved for frequency spectrum analysis. Experimental results in time domain and frequency domain both accord with those of theoretical analysis, which verifies that the proposed failure physics model is accurate. In addition, due to immunity to vast measurement noise, the novel method processing in frequency domain is superior to the traditional method conducting in time domain. It can easily achieve about 0.1% Trojan detection sensitivity, which indicates that the novel detection method is effective.
Keywords :
field programmable gate arrays; invasive software; multiprocessing systems; FPGA; LabVIEW software; Trojan area; Trojan circuit; Xilinx FPGA; automatic test platform; core power supply; digital CORDIC IP core; failure physics model; frequency spectrum analysis; golden circuit; hardware Trojan detection; novel detection method; security threat; Frequency-domain analysis; Hardware; Noise; Physics; Spectral analysis; Time-domain analysis; Trojan horses; HardwareTrojan; failure physics model; frequency spectrum analysis; side-channel analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Reliability Physics Symposium (IRPS), 2015 IEEE International
Conference_Location :
Monterey, CA
Type :
conf
DOI :
10.1109/IRPS.2015.7112822
Filename :
7112822
Link To Document :
بازگشت