Title :
Mobile hosting and sensor eco-system for radiation detection
Author :
Lomotey, Richard K. ; Deters, Ralph ; Kaletsch, Kai
Author_Institution :
Dept. of Comput. Sci., Univ. of Saskatchewan, Saskatoon, SK, Canada
Abstract :
Gamma ray is an electromagnetic radiation with a very high frequency that can be biologically hazardous. Most workers in the mining, manufacturing, security, and other industries find themselves in such hazardous environments and governments are trying to contain this issue. While traditionally, high gamma radiation detection sensors have been manufactured to be carried along by users, they are not good access point for actual dosage readings. With the recent advancement in mobile technology, this paper proposes a mobile hosting architecture to enable mobile-to-sensor communication following the edge-based technique. This means the sensor can detect the radiation and send readings to a smartphone device of the user. All other near-by mobile devices (which are authorized) will receive the notification to alert the people in the hazard zone. In this paper, the notification dissemination is developed based on the sequential flow pattern. The proposed work is tested and the results show that detected radiations are sent in soft real-time to the mobile devices.
Keywords :
electromagnetic waves; gamma-ray detection; smart phones; dosage readings; electromagnetic radiation; gamma radiation detection sensors; gamma ray; mobile hosting architecture; mobile-to-sensor communication; notification dissemination; sensor eco-system; sequential flow pattern; smartphone device; Bluetooth; Computer architecture; Mobile communication; Mobile handsets; Real-time systems; Software; Synchronization; Cloud computing; Gamma Radiation; Latency; Mobile hosting; Optimal Path; Process flow;
Conference_Titel :
Systems Conference (SysCon), 2015 9th Annual IEEE International
Conference_Location :
Vancouver, BC
DOI :
10.1109/SYSCON.2015.7116839