DocumentCode :
71189
Title :
Electrical Performance of Penetrating Microelectrodes Chronically Implanted in Cat Cortex
Author :
Kane, Sheryl R. ; Cogan, Stuart F. ; Ehrlich, Julia ; Plante, Timothy D. ; McCreery, Douglas B. ; Troyk, Philip R.
Author_Institution :
EIC Labs., Norwood, MA, USA
Volume :
60
Issue :
8
fYear :
2013
fDate :
Aug. 2013
Firstpage :
2153
Lastpage :
2160
Abstract :
Penetrating microelectrode arrays with 2000 μm2 sputtered iridium oxide (SIROF) electrode sites were implanted in cat cerebral cortex, and their long-term electrochemical performance evaluated in vivo by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and current pulsing. Measurements were made from days 33 to 328 postimplantation. The CV-defined charge storage capacity, measured at 50 mV/s, increased linearly with time over the course of implantation for two arrays and was unchanged for one array. A modest decrease in 1 kHz impedance was also observed. These results suggest an ongoing increase in the apparent electrochemical surface area of the electrodes, which is attributed to electrical leakage pathways arising from cracking of Parylene insulation observed by SEM of explanted arrays. During current pulsing with a 0.0 V interpulse bias, the electrodes readily delivered 8 nC/phase in vitro, but some channels approached or exceeded the water reduction potential during in vivo pulsing. The charge injection capacity in vivo increased linearly with the interpulse bias (0-0.6 V Ag|AgCl) from 11.5 to 21.8 nC/ph and with pulse width (150-500 μs) from 8.8 to 14 nC/ph (at 0.0 V bias). These values are lower than those determined from measurements in buffered physiological saline, emphasizing the importance of in vivo measurements in assessing chronic electrode performance. The consequence of current leakage pathways on the charge-injection measurements is also discussed.
Keywords :
biomedical electrodes; brain; charge injection; electrochemical electrodes; electrochemical impedance spectroscopy; iridium compounds; microelectrodes; prosthetics; SIROF; cat cerebral cortex; charge storage capacity; charge-injection measurements; chronic implantation; current leakage pathways; cyclic voltammetry; electrochemical impedance spectroscopy; penetrating microelectrode arrays; sputtered iridium oxide; Current measurement; Electric potential; Impedance; In vivo; Microelectrodes; Voltage measurement; Charge injection; impedance; microelectrode; neural recording; neural stimulation; Animals; Cats; Cerebral Cortex; Electric Impedance; Electrodes, Implanted; Electroencephalography; Equipment Design; Equipment Failure Analysis; Microelectrodes; Monitoring, Ambulatory; Reproducibility of Results; Sensitivity and Specificity;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/TBME.2013.2248152
Filename :
6471190
Link To Document :
بازگشت