Title :
Identification of piezoelectric LuGre model based on particle swarm optimization and real-coded genetic algorithm
Author :
Irakoze, R. ; Yakoub, K. ; Kaddouri, A.
Author_Institution :
Dept. of Electr. Eng., Univ. of Moncton, Moncton, NB, Canada
Abstract :
This paper deals with the identification of a piezoelectric actuator model parameters considering LuGre model used in friction modelling. The identification is based on two artificial intelligence techniques: the particle swarm optimization (PSO) and the real-coded genetic algorithm (RGA) techniques. The identification procedure is performed using a high precision actuator. Experiments are carried out to optimize algorithms parameters and a comparison between the two techniques is presented.
Keywords :
computerised instrumentation; genetic algorithms; particle swarm optimisation; piezoelectric actuators; PSO; RGA technique; artificial intelligence technique; particle swarm optimization; piezoelectric LuGre model; piezoelectric actuator model parameter; real-coded genetic algorithm; Computational modeling; Friction; Hysteresis; Mathematical model; Piezoelectric actuators; Sociology; Statistics;
Conference_Titel :
Electrical and Computer Engineering (CCECE), 2015 IEEE 28th Canadian Conference on
Conference_Location :
Halifax, NS
Print_ISBN :
978-1-4799-5827-6
DOI :
10.1109/CCECE.2015.7129494