DocumentCode :
71461
Title :
Performance Evaluation of Semantic Kriging: A Euclidean Vector Analysis Approach
Author :
Bhattacharjee, Shrutilipi ; Ghosh, Soumya K.
Author_Institution :
Sch. of Inf. Technol., Indian Inst. of Technol., Kharagpur, Kharagpur, India
Volume :
12
Issue :
6
fYear :
2015
fDate :
Jun-15
Firstpage :
1185
Lastpage :
1189
Abstract :
Prediction of spatial attributes in geospatial data repositories is indispensable in the field of remote sensing and geographic information system. The semantic kriging (SemK) approach semantically captures the domain knowledge of the terrain in terms of local spatial features for spatial attribute prediction. It produces better results than ordinary kriging and other prediction methods. This letter focuses on the theoretical and empirical analyses of the SemK. A Euclidean vector analysis approach is adopted to theoretically prove the efficacy of SemK in capturing semantic knowledge.
Keywords :
geographic information systems; remote sensing; semantic networks; terrain mapping; vectors; Euclidean vector analysis approach; GIS; SemK; geographic information system; geospatial data repositories; remote sensing; semantic knowledge capture; semantic kriging performance evaluation; spatial attribute prediction; spatial features; terrain; Correlation; Covariance matrices; Euclidean distance; Interpolation; Ontologies; Semantics; Vectors; Geographic information system (GIS); kriging; prediction; semantic kriging (SemK);
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
Publisher :
ieee
ISSN :
1545-598X
Type :
jour
DOI :
10.1109/LGRS.2014.2387373
Filename :
7045481
Link To Document :
بازگشت