Title :
Interactive virtual building walkthrough using Oculus Rift and Microsoft Kinect
Author :
Woodard, Will ; Sukittanon, Somsak
Author_Institution :
Dept. of Eng., Univ. of Tennessee at Martin, Martin, TN, USA
Abstract :
Virtual walkthroughs of buildings and venues have been in use for as long as three-dimensional modeling has existed. They are an efficient way to portray designs in a more personal way than the standard two-dimensional drawings, so those with less technical drawing experience can envision what a future project´s final design might look like. Most virtual walkthroughs are directly rendered as a movie, and thus incorporate very little user input, and are limited to the route that the creator wishes the end user to experience. This paper presents a fully immersive experience for the user in the virtual space, by using an Oculus Rift headset for head tracking and 3D viewing. Hardware also includes Microsoft Kinect integration, for realistic environment interaction using limb tracking. In terms of 3D modeling software, Rhinoceros3 was chosen due to its ability to texture map complex objects, as well as its long list of compatible file types. The physics engine chosen is Unity3D standard, due to its ability to add C# scripts to objects for user interaction, and its Kinect and Oculus Rift compatibility. The strategy of using hardware and software that is very versatile in terms of compatibility is chosen in order to minimize the proportion of rework if a sudden change in software/hardware becomes necessary, so that old work can still seamlessly integrate into the new platform. The subject of this prototype walkthrough is the Johnson Engineering and Physical Sciences Building at UT Martin, and will in time expand to a full campus walkthrough.
Keywords :
image sensors; object tracking; solid modelling; virtual reality; 3D modeling software; 3D viewing; C# scripts; Johnson Engineering and Physical Sciences Building; Kinect Rift compatibility; Microsoft Kinect integration; Oculus Rift compatibility; Oculus Rift headset; Rhinoceros3; UT Martin; Unity3D standard; head tracking; interactive virtual building walkthrough; limb tracking; texture map complex objects; three-dimensional modeling; two-dimensional drawings; Cameras; Floors; Hardware; Software; Solid modeling; Virtual reality;
Conference_Titel :
SoutheastCon 2015
Conference_Location :
Fort Lauderdale, FL
DOI :
10.1109/SECON.2015.7132929