DocumentCode :
716996
Title :
Efficient and secure split manufacturing via obfuscated built-in self-authentication
Author :
Kan Xiao ; Forte, Domenic ; Tehranipoor, Mark Mohammed
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Connecticut, Storrs, CT, USA
fYear :
2015
fDate :
5-7 May 2015
Firstpage :
14
Lastpage :
19
Abstract :
The threats of reverse-engineering, IP piracy, and hardware Trojan insertion in the semiconductor supply chain are greater today than ever before. Split manufacturing has emerged as a viable approach to protect integrated circuits (ICs) fabricated in untrusted foundries, but has high cost and/or high performance overhead. Furthermore, split manufacturing cannot fully prevent untargeted hardware Trojan insertions. In this paper, we propose to insert additional functional circuitry called obfuscated built-in self-authentication (OBISA) in the chip layout with split manufacturing process, in order to prevent reverse-engineering and further prevent hardware Trojan insertion. Self-tests are performed to authenticate the trustworthiness of the OBISA circuitry. The OBISA circuit is connected to original design in order to increase the strength of obfuscation, thereby allowing a higher layer split and lower overall cost. Additional fan-outs are created in OBISA circuitry to improve obfuscation without losing testability. Our proposed gating mechanism and net selection method can ensure negligible overhead in terms of area, timing, and dynamic power. Experimental results demonstrate the effectiveness of the proposed technique in several benchmark circuits.
Keywords :
foundries; integrated circuit manufacture; integrated circuit reliability; invasive software; reverse engineering; supply chains; IP piracy; OBISA circuit; chip layout; hardware Trojan insertion; integrated circuits; obfuscated built-in self-authentication; reverse engineering; semiconductor supply chain; split manufacturing; trustworthiness; untrusted foundries; Delays; Fabrication; Foundries; Layout; Logic gates;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Hardware Oriented Security and Trust (HOST), 2015 IEEE International Symposium on
Conference_Location :
Washington, DC
Type :
conf
DOI :
10.1109/HST.2015.7140229
Filename :
7140229
Link To Document :
بازگشت