DocumentCode :
718235
Title :
Functional connectivity analysis of motor imagery EEG signal for brain-computer interfacing application
Author :
Ghosh, Poulami ; Mazumder, Ankita ; Bhattacharyya, Saugat ; Tibarewala, D.N. ; Hayashibe, Mitsuhiro
Author_Institution :
Sch. of Biosci. & Eng., Jadavpur Uviversity, Kolkata, India
fYear :
2015
fDate :
22-24 April 2015
Firstpage :
210
Lastpage :
213
Abstract :
The human brain can be considered as a graphical network having different regions with specific functionality and it can be said that a virtual functional connectivity are present between these regions. These regions are regarded as nodes and the functional links are regarded as the edges between them. The intensity of these functional links depend on the activation of the lobes while performing a specific task(e.g. motor imagery tasks, cognitive tasks and likewise). The main aim of this study is to understand the activation of the parts of the brain while performing three types of motor imagery tasks with the help of graph theory. Two indices of the graph, namely Network Density and Node Strength are calculated for 32 electrodes placed on the subject´s head covering all the brain lobes and the nodes having higher intensity are identified.
Keywords :
biomedical electrodes; brain-computer interfaces; electroencephalography; graph theory; medical signal processing; network theory (graphs); brain lobes; brain-computer interfacing application; electrodes; functional connectivity analysis; graph theory; motor imagery EEG signal; network density; node strength; Electrodes; Electroencephalography; Silicon compounds; Tongue; Training; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Engineering (NER), 2015 7th International IEEE/EMBS Conference on
Conference_Location :
Montpellier
Type :
conf
DOI :
10.1109/NER.2015.7146597
Filename :
7146597
Link To Document :
بازگشت