DocumentCode :
719261
Title :
The fisher information matrix and the CRLB in a non-AWGN model for the phase retrieval problem
Author :
Balan, Radu
Author_Institution :
Dept. of Math., Univ. of Maryland, College Park, MD, USA
fYear :
2015
fDate :
25-29 May 2015
Firstpage :
178
Lastpage :
182
Abstract :
In this paper we derive the Fisher information matrix and the Cramer-Rao lower bound for the non-additive white Gaussian noise model yk = |{x, fk) + μk|2, 1 ≤ k ≤ m, where {f1, · · ·, fm} is a spanning set for Cn and (μ1, ..., μm) are i.i.d. realizations of the Gaussian complex process CN(0, ρ2). We obtain closed form expressions that include quadrature integration of elementary functions.
Keywords :
AWGN; integration; signal reconstruction; signal representation; CRLB; Cramer-Rao lower bound; elementary function quadrature integration; fisher information matrix; nonAWGN model; nonadditive white Gaussian noise model; phase retrieval problem; AWGN; Computational modeling; Mathematical model; Noise measurement; Signal to noise ratio;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Sampling Theory and Applications (SampTA), 2015 International Conference on
Conference_Location :
Washington, DC
Type :
conf
DOI :
10.1109/SAMPTA.2015.7148875
Filename :
7148875
Link To Document :
بازگشت