Title :
Downlink coverage probability in a cellular network with Ginibre deployed base stations and Nakagami-m fading channels
Author :
Miyoshi, Naoto ; Shirai, Tomoyuki
Author_Institution :
Dept. of Math. & Comput. Sci., Tokyo Inst. of Technol., Tokyo, Japan
Abstract :
Recently, spatial stochastic models based on determinantal point processes (DPP) are studied as promising models for analysis of cellular wireless networks. Indeed, the DPPs can express the repulsive nature of the macro base station (BS) configuration observed in a real cellular network and have many desirable mathematical properties to analyze the network performance. However, almost all the prior works on the DPP based models assume the Rayleigh fading while the spatial models based on Poisson point processes have been developed to allow arbitrary distributions of fading/shadowing propagation effects. In order for the DPP based model to be more promising, it is essential to extend it to allow non-Rayleigh propagation effects. In the present paper, we propose the downlink cellular network model where the BSs are deployed according to the Ginibre point process, which is one of the main examples of the DPPs, over Nakagami-m fading. For the proposed model, we derive a numerically computable form of the coverage probability and reveal some properties of it numerically and theoretically.
Keywords :
Nakagami channels; Rayleigh channels; cellular radio; probability; stochastic processes; Ginibre deployed base stations; Nakagami-m fading channels; Poisson point processes; Rayleigh fading; cellular wireless networks; determinantal point processes; downlink cellular network model; downlink coverage probability; macrobase station configuration; nonRayleigh propagation effects; Ad hoc networks; Mobile communication; Mobile computing; Optimization; Wireless networks;
Conference_Titel :
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2015 13th International Symposium on
Conference_Location :
Mumbai
DOI :
10.1109/WIOPT.2015.7151109