DocumentCode :
721080
Title :
Petroleum Geoscience Big Data and GPU Parallel Computing
Author :
Fei Han ; Sun, Sam Z.
Author_Institution :
Lab. for Integration of Geol. & Geophys. (LIGG), China Univ. of Pet., Beijing, China
fYear :
2015
fDate :
20-22 April 2015
Firstpage :
292
Lastpage :
293
Abstract :
Petroleum geoscience big data is defined in this paper. CPU/GPU hybrid system is used to try to accelerate computing speed of petroleum geoscience big data using chaotic quantum particle swarm optimization (CQPSO) inversion method as an example, and the computing time of CQPSO is reduced significantly.
Keywords :
Big Data; geophysics computing; graphics processing units; particle swarm optimisation; petroleum industry; CPU-GPU hybrid system; CQPSO; GPU parallel computing; chaotic quantum particle swarm optimization; computing time; inversion method; petroleum geoscience big data; Algorithm design and analysis; Big data; Clustering algorithms; Geoscience; Graphics processing units; Parallel processing; Petroleum; GPU parallel computing; Petroleum geoscience big data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia Big Data (BigMM), 2015 IEEE International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4799-8687-3
Type :
conf
DOI :
10.1109/BigMM.2015.59
Filename :
7153902
Link To Document :
بازگشت