Title :
Coverage-based opacity estimation for interactive Depth of Field in molecular visualization
Author :
Kottravel, Sathish ; Falk, Martin ; Sunden, Erik ; Ropinski, Timo
Author_Institution :
Interactive Visualization Group, Linkoping Univ., Linkoping, Sweden
Abstract :
In this paper, we introduce coverage-based opacity estimation to achieve Depth of Field (DoF) effects when visualizing molecular dynamics (MD) data. The proposed algorithm is a novel object-based approach which eliminates many of the shortcomings of state-of-the-art image-based DoF algorithms. Based on observations derived from a physically-correct reference renderer, coverage-based opacity estimation exploits semi-transparency to simulate the blur inherent to DoF effects. It achieves high quality DoF effects, by augmenting each atom with a semi-transparent shell, which has a radius proportional to the distance from the focal plane of the camera. Thus, each shell represents an additional coverage area whose opacity varies radially, based on our observations derived from the results of multi-sampling DoF algorithms. By using the proposed technique, it becomes possible to generate high quality visual results, comparable to those achieved through ground-truth multi-sampling algorithms. At the same time, we obtain a significant speedup which is essential for visualizing MD data as it enables interactive rendering. In this paper, we derive the underlying theory, introduce coverage-based opacity estimation and demonstrate how it can be applied to real world MD data in order to achieve DoF effects. We further analyze the achieved results with respect to performance as well as quality and show that they are comparable to images generated with modern distributed ray tracing engines.
Keywords :
interactive systems; molecular dynamics method; ray tracing; rendering (computer graphics); sampling methods; DoF; MD data visualization; atom augmentation; blur simulation; camera focal plane; coverage area; coverage-based opacity estimation; distributed ray tracing engines; ground-truth multisampling algorithms; interactive depth-of-field; interactive rendering; molecular dynamics data visualization; molecular visualization; multisampling DoF algorithms; object-based approach; physically-correct reference renderer; semitransparent shell; Apertures; Atomic measurements; Cameras; Data visualization; Estimation; Lenses; Rendering (computer graphics); I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color; shading; shadowing; texture;
Conference_Titel :
Visualization Symposium (PacificVis), 2015 IEEE Pacific
Conference_Location :
Hangzhou
DOI :
10.1109/PACIFICVIS.2015.7156385