Title :
Oscillatory tunneling magnetoresistance in Fe3O4/GaAs/Fe3O4 junction
Author :
Huang, Z. ; Yue, J. ; Wang, J. ; Zhai, Y. ; Xu, Y. ; Wang, B.
Author_Institution :
Dept. of Phys., Southeast Univ., Nanjing, China
Abstract :
Spintronics strives to revolutionize conventional electronics by integrating magnetic materials with semiconductor devices, such as the spin field effect transistor (SFET), which not only improve the capabilities of electronic devices, but develop new functionalities. For electrodes of spin injection and detection in SFET device, half metallic Fe3O4 is an attractive candidate because its high Curie temperature of 858 K, large spin polarization near 100% at the Fermi level and relatively high electronic conductivity at room temperature, which is believed to benefit the injection of spin carriers into the semiconductors. For ferromagnetic metal(FM)/Semiconductor system, Fe3O4/GaAs is a very promising system for the fabrication of magnetoelectronic devices due to the Schottky contact of the Fe3O4/GaAs interface, which is crucial for studying the behaviors of spin dependent transportation for the devices. It is reported that in a FM/I/NM/I/FM double tunnel junction, where NM is the normal metal, and I the insulating barrier, theories predicted an oscillation of the tunneling magnetoresistance (TMR) effect as a function of the NM layer thickness because the spin polarization of the tunneling electron oscillates as a result of the resonant tunneling. Furthermore, Quantum oscillation of spin polarization in GaAs channel was experimentally demonstrated. In this paper, we have presented a theoretical approach to the tunneling conductance and TMR in a Fe3O4/GaAs/Fe3O4 magnetic double tunnel junction with both ballistic and diffusive components.
Keywords :
III-V semiconductors; gallium arsenide; interface magnetism; iron compounds; oscillations; spin polarised transport; tunnelling magnetoresistance; Curie temperature; Fe3O4-GaAs-Fe3O4; Fermi level; GaAs channel; Schottky contact; ballistic component; detection electrode; diffusive component; electronic conductivity; ferromagnetic metal-semiconductor system; insulating barrier; magnetic double tunnel junction; magnetic materials; magnetoelectronic device fabrication; quantum oscillation; resonant tunneling; semiconductor devices; spin carrier injection; spin dependent transportation; spin field effect transistor device; spin injection electrode; spin polarization; spintronics; tunneling conductance; tunneling electron; tunneling magnetoresistance effect oscillation; Frequency modulation; Gallium arsenide; Junctions; Magnetoelectronics; Oscillators; Tunneling magnetoresistance;
Conference_Titel :
Magnetics Conference (INTERMAG), 2015 IEEE
Conference_Location :
Beijing
Print_ISBN :
978-1-4799-7321-7
DOI :
10.1109/INTMAG.2015.7156969