DocumentCode :
722668
Title :
A fail safe broadcast protocol for collaborative intelligent vehicles
Author :
Yitian Gu ; Shou-pon Lin ; Maxemchuk, Nicholas F.
Author_Institution :
Dept. of Electr. Eng., Columbia Univ., New York, NY, USA
fYear :
2015
fDate :
14-17 June 2015
Firstpage :
1
Lastpage :
6
Abstract :
This paper presents a broadcast protocol that makes cooperative driving applications safer. Collaborative driving is a rapidly evolving trend in intelligent transportation system. Current communication services provided by vehicular ad-hoc network (VANET) cannot guarantee fail-safe operation. We present a fail safe broadcast protocol (FSBP) that resides between the cooperative driving applications and VANET to make the cooperative driving applications work in a safer way. The protocol uses synchronized clocks with the help of GPS to schedule the broadcast transmissions of the participants. Electing not to transmit at a scheduled time is a unique message that cannot be lost because of a noisy or lost communication channel. This message is used to abort a collaborative operation and revert to an autonomous driving mode, similar to the current generation of intelligent vehicles, in which a vehicle protects itself. We describe a particular, simple protocol that uses a token passing mechanism. We specify the protocol as a finite state machine and use probabilistic verification to verify the protocol. This is the first formal verification of a multi-party broadcast protocol.
Keywords :
Global Positioning System; access protocols; cooperative communication; finite state machines; intelligent transportation systems; telecommunication scheduling; vehicular ad hoc networks; GPS; VANET; autonomous driving mode; broadcast transmission scheduling; collaborative intelligent vehicles; collaborative operation; fail safe broadcast protocol; finite state machine; intelligent transportation system; lost communication channel; noisy communication channel; probabilistic verification; safer cooperative driving applications; synchronized clocks; token passing mechanism; vehicular ad hoc network; Clocks; Collaboration; Protocols; Receivers; Synchronization; Vehicles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2015 IEEE 16th International Symposium on a
Conference_Location :
Boston, MA
Type :
conf
DOI :
10.1109/WoWMoM.2015.7158215
Filename :
7158215
Link To Document :
بازگشت