DocumentCode :
724536
Title :
The impact of parameter adjustment strategies on the performance of particle swarm optimization algorithm
Author :
Zhang Xun ; Li Juelong ; Xing Jianchun ; Wang Ping ; Yang Qiliang
Author_Institution :
Coll. of Defense Eng., PLA Univ. of Sci. & Technol., Nanjing, China
fYear :
2015
fDate :
23-25 May 2015
Firstpage :
5206
Lastpage :
5211
Abstract :
To determine the reasonable parameter settings of particle swarm optimization (PSO) algorithm, this paper discusses the impact of the time-varying inertia weight and velocity-based mutation strategies on the performance of PSO algorithm. The performance of the PSO algorithm with these two kinds of parameters adjustment strategies are tested through four well-known benchmark functions. The simulation results show that the PSO algorithm has better convergence performance with the quickly decreasing inertia weight. Also, the velocity-based mutation strategy will slow down the convergence speed of PSO algorithm if the global solutions over the adjacent generations are close to each other.
Keywords :
particle swarm optimisation; PSO algorithm; parameter adjustment strategy; particle swarm optimization algorithm; time-varying inertia weight; velocity-based mutation strategy; Algorithm design and analysis; Benchmark testing; Convergence; Particle swarm optimization; Sociology; Software algorithms; Statistics; convergence speed; inertia weight; mutation strategy; particle swarm optimization; search precision;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Decision Conference (CCDC), 2015 27th Chinese
Conference_Location :
Qingdao
Print_ISBN :
978-1-4799-7016-2
Type :
conf
DOI :
10.1109/CCDC.2015.7162853
Filename :
7162853
Link To Document :
بازگشت