DocumentCode :
72754
Title :
Electrochemical Potentials (Quasi-Fermi Levels) and the Operation of Hot-Carrier, Impact-Ionization, and Intermediate-Band Solar Cells
Author :
Marti, A. ; Luque, Antonio
Author_Institution :
Inst. de Energia Solar, Univ. Politec. de Madrid, Madrid, Spain
Volume :
3
Issue :
4
fYear :
2013
fDate :
Oct. 2013
Firstpage :
1298
Lastpage :
1304
Abstract :
In the framework of the so-called third generation solar cells, three main concepts have been proposed in order to exceed the limiting efficiency of single-gap solar cells: the hot-carrier solar cell, the impact-ionization or multiple-exciton-generation solar cell, and the intermediate-band solar cell. At first sight, the three concepts are different, but in this paper, we illustrate how all these concepts, including the single-gap solar cell, share a common trunk that we call “core photovoltaic material.” We demonstrate that each one of these next-generation concepts differentiates in fact from this trunk depending on the hypotheses that are made about the physical principles governing the electron electrochemical potentials. In the process, we also clarify the differences between electron, phonon, and photon chemical potentials (the three fundamental particles involved in the operation of the solar cell). The in-depth discussion of the physics involved about the operation of these cells also provides new insights about the operation of these cells.
Keywords :
Fermi level; chemical potential; excitons; hot carriers; impact ionisation; phonons; photovoltaic effects; solar cells; core photovoltaic material; electron electrochemical potential; fundamental particles; hot-carrier solar cell; impact-ionization solar cell; intermediate-band solar cells; multiple-exciton-generation solar cell; phonon chemical potential; photon chemical potential; quasiFermi levels; single-gap solar cells; third generation solar cells; Charge carrier processes; Hot carrier effects; Impact ionization; Photovoltaic cells; Thermodynamics; Hot-carrier; impact-ionization; intermediate band; solar cells; thermodynamics;
fLanguage :
English
Journal_Title :
Photovoltaics, IEEE Journal of
Publisher :
ieee
ISSN :
2156-3381
Type :
jour
DOI :
10.1109/JPHOTOV.2013.2274381
Filename :
6575115
Link To Document :
بازگشت