DocumentCode :
728120
Title :
Tensor regression for LTI subspace identification
Author :
Gunes, Bilal ; van Wingerden, Jan-Willem ; Verhaegen, Michel
Author_Institution :
Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands
fYear :
2015
fDate :
1-3 July 2015
Firstpage :
1131
Lastpage :
1136
Abstract :
The biggest bottleneck of Linear Parameter Varying (LPV) subspace identification methods is the unavoidable over-parametrization in its first, rank-revealing estimation step. This motivated us to look at less superfluous parametrizations for Linear Time Invariant (LTI) subspace methods which have the potential to be extended to the LPV case. In this paper, we propose a method based on tensor regression and Multiple Inputs Multiple Outputs (MIMO) canonical forms which has a less superfluous parametrization. The proposed method can be used to obtain consistent estimates with comparable variance to the over-parametrized linear regression estimates, but uses much less parameters. Additionally, the linearised variant of our proposed method is presented, which reduces the parameter count even more. The effectiveness of the proposed method is illustrated with a simulation example.
Keywords :
MIMO systems; linear parameter varying systems; linearisation techniques; parameter estimation; regression analysis; tensors; LPV subspace identification method; LTI subspace identification; LTI subspace method; MIMO canonical form; linear parameter varying; linear time invariant subspace method; linearised variant; multiple inputs multiple outputs canonical form; over-parametrized linear regression estimate; rank-revealing estimation step; tensor regression; Estimation; Linear regression; Linear systems; MIMO; Magnetic resonance imaging; Mathematical model; Tensile stress;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2015
Conference_Location :
Chicago, IL
Print_ISBN :
978-1-4799-8685-9
Type :
conf
DOI :
10.1109/ACC.2015.7170885
Filename :
7170885
Link To Document :
بازگشت