DocumentCode :
728360
Title :
Optimal path planning and resource allocation for active target localization
Author :
Freundlich, Charles ; Mordohai, Philippos ; Zavlanos, Michael M.
Author_Institution :
Dept. of Mech. Eng. & Mater. Sci., Duke Univ., Durham, NC, USA
fYear :
2015
fDate :
1-3 July 2015
Firstpage :
3088
Lastpage :
3093
Abstract :
This paper addresses optimal path planning and resource allocation for active multi-target localization. For each target, we solve a local Dynamic Program (DP) that plans optimal trajectories in the joint state-space of robot positions and target location uncertainties, captured by a cumulative error covariance matrix. The transitions in the space of robot positions are governed by the robot dynamics, while the transitions in the space of target uncertainties are regulated by a Kalman filter (KF) that fuses new information about the target locations with the current beliefs. The fused target uncertainties enter the objective function of the local DP using the trace of the associated covariance matrix. Using the optimal sensing policies local to each target, we construct a global DP to determine how far along the single target optimal trajectories the sensor should travel before transitioning to the next target. The integrated system jointly optimizes the collective target localization uncertainty and the total distance traveled by the sensing agent. The proposed control scheme is more computationally efficient than methods that use only the sensor configuration to compute future uncertainty and more exact than methods that abstract away the filtered sensing uncertainty.
Keywords :
Kalman filters; covariance matrices; dynamic programming; mobile robots; multi-robot systems; navigation; path planning; resource allocation; robot dynamics; sensor fusion; trajectory control; KF; Kalman filter; active multitarget localization; collective target localization uncertainty; cumulative error covariance matrix; filtered sensing uncertainty; joint state-space; local DP objective function; local dynamic programming; optimal path planning; optimal sensing policy; optimal trajectory planning; resource allocation; robot dynamics; robot position space; sensing agent; sensor configuration; single target optimal trajectory; Covariance matrices; Eigenvalues and eigenfunctions; Robot sensing systems; Silicon; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2015
Conference_Location :
Chicago, IL
Print_ISBN :
978-1-4799-8685-9
Type :
conf
DOI :
10.1109/ACC.2015.7171807
Filename :
7171807
Link To Document :
بازگشت