DocumentCode :
72897
Title :
Hysteretic Transition Method for Avoiding the Dead-Zone Effect and Subharmonics in a Noninverting Buck–Boost Converter
Author :
Restrepo, Carlos ; Konjedic, Tine ; Calvente, Javier ; Giral, Roberto
Author_Institution :
Dept. de Ing. Electr., Univ. Tec. Federico Santa Maria, Santiago de Chile, Chile
Volume :
30
Issue :
6
fYear :
2015
fDate :
Jun-15
Firstpage :
3418
Lastpage :
3430
Abstract :
A new hysteresis window method is proposed as a solution for avoiding the operational dead zone that exists at the transition between buck and boost operating modes in all noninverting buck-boost converters. In addition, this method also eliminates the discontinuities in the converter´s steady-state output voltage transfer characteristic, which is a function of the duty cycle. The converter´s output voltage function is surjective and, therefore, smooth mode transitions are achieved. The negative effects of operating within the dead zone are shown by the presence of subharmonics in the output voltage, increased output voltage ripple, poor regulation, and the instability of the converter during the transition between buck and boost operating modes. The dead-zone avoidance technique proposed in this paper eliminates all these issues while at the same time ensures highly efficient operation of the converter. An additional advantage of the technique is its simplicity, which allows for implementation into low-cost digital signal controllers, as well as into analog control circuits. The advantageous features of the proposed approach were evaluated on the basis of comparisons with three other dead-zone avoidance approaches and the initial case, which does not utilize any dead-zone avoidance technique. All the experiments were carried out on a purpose-built prototype of a noninverting buck-boost converter with magnetically coupled inductors.
Keywords :
inductors; power convertors; analog control circuits; boost operating modes; buck operating modes; dead-zone effect avoidance; duty cycle; hysteretic transition method; low-cost digital signal controllers; magnetically coupled inductors; noninverting buck-boost converter; purpose-built prototype; smooth mode transitions; steady-state output voltage transfer characteristic; subharmonics avoidance; Control systems; Delays; Power conversion; Steady-state; Switching frequency; Transistors; Voltage control; Buck???boost transitions; dc???dc power converters; dead-zone avoidance; digital control; noninverting buck???boost converter;
fLanguage :
English
Journal_Title :
Power Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8993
Type :
jour
DOI :
10.1109/TPEL.2014.2333736
Filename :
6845333
Link To Document :
بازگشت