Title :
Regularity Preserving but Not Reflecting Encodings
Author :
Endrullis, Jorg ; Grabmayer, Clemens ; Hendriks, Dimitri
Author_Institution :
Dept. of Comput. Sci., VU Univ. Amsterdam, Amsterdam, Netherlands
Abstract :
Encodings, that is, injective functions from words to words, have been studied extensively in several settings. In computability theory the notion of encoding is crucial for defining computability on arbitrary domains, as well as for comparing the power of models of computation. In language theory much attention has been devoted to regularity preserving functions. A natural question arising in these contexts is: Is there a bijective encoding such that its image function preserves regularity of languages, but its pre-image function does not? Our main result answers this question in the affirmative: For every countable class C of languages there exists a bijective encoding f such that for every language L ∈ L its image f[L] is regular. Our construction of such encodings has several noteworthy consequences. Firstly, anomalies arise when models of computation are compared with respect to a known concept of implementation that is based on encodings which are not required to be computable: Every countable decision model can be implemented, in this sense, by finite-state automata, even via bijective encodings. Hence deterministic finite-state automata would be equally powerful as Turing machine deciders. A second consequence concerns the recognizability of sets of natural numbers via number representations and finite automata. A set of numbers is said to be recognizable with respect to a representation if an automaton accepts the language of representations. Our result entails that there is one number representation with respect to which every recursive set is recognizable.
Keywords :
Turing machines; computability; deterministic automata; finite automata; formal languages; number theory; set theory; Turing machine deciders; arbitrary domains; bijective encoding; computability theory; countable decision model; deterministic finite-state automata; injective functions; language theory; languages regularity; natural numbers; number representations; preimage function; reflecting encodings; regularity preserving functions; sets recognizability; Automata; Computational modeling; Computer science; Context; Electronic mail; Encoding; Image coding;
Conference_Titel :
Logic in Computer Science (LICS), 2015 30th Annual ACM/IEEE Symposium on
Conference_Location :
Kyoto
DOI :
10.1109/LICS.2015.56