DocumentCode :
729402
Title :
Context-sensitive text mining with fitness leveling Genetic Algorithm
Author :
Huk, Maciej ; Kwiatkowski, Jan ; Konieczny, Dariusz ; Kedziora, Michal ; Mizera-Pietraszko, Jolanta
Author_Institution :
Dept. of Comput. Sci., Wroclaw Univ. of Technol., Wroclaw, Poland
fYear :
2015
fDate :
24-26 June 2015
Firstpage :
342
Lastpage :
347
Abstract :
Contextual processing is a great challenge for information retrieval study - the most approved techniques include scanning content of HTML web pages, user supported metadata analysis, automatic inference grounded on knowledge base, or content-oriented digital documents analysis. We propose a meta-heuristic by making use of Genetic Algorithms for Contextual Search (GACS) built on genetic programming (GP) and custom fitness leveling function to optimize contextual queries in exact search that represents unstructured phrases generated by the user. Our findings show that the queries built with GACS can significantly optimize the retrieval process.
Keywords :
data mining; genetic algorithms; query processing; text analysis; GACS; HTML Web pages; automatic inference; content-oriented digital documents analysis; context-sensitive text mining; contextual processing; contextual queries; custom fitness leveling function; fitness leveling genetic algorithm; genetic algorithms for contextual search; genetic programming; information retrieval; knowledge base; meta-heuristic; retrieval process; user supported metadata analysis; Context; Convergence; Correlation; Data mining; Genetic algorithms; Sociology; Data mining; contextual search; fitness leveling; genetic programming; text retrieval;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cybernetics (CYBCONF), 2015 IEEE 2nd International Conference on
Conference_Location :
Gdynia
Print_ISBN :
978-1-4799-8320-9
Type :
conf
DOI :
10.1109/CYBConf.2015.7175957
Filename :
7175957
Link To Document :
بازگشت