DocumentCode :
734188
Title :
A depth-first search algorithm of mining maximal frequent itemsets
Author :
Xin Zhang ; Kunlun Li ; Pin Liao
Author_Institution :
Coll. of Sci. & Technol., Nanchang Univ., Nanchang, China
fYear :
2015
fDate :
27-29 March 2015
Firstpage :
170
Lastpage :
173
Abstract :
Mining maximal frequent itemsets is a fundamental and important issue in many data mining application. A new depth-first search algorithm for mining maximal frequent itemsets called DFMFI (depth-first search for maximal frequent itemsets) is proposed, which can reduce the number of candidate itemsets and the cost of support counting. DFMFI projects the dataset information stored by the compressed FP-tree into the conditional matrix, and improves efficiency of support counting by using vector logic operation. Global 2-itemset pruning and local extension pruning used to prune the search space effectively. The experiments results verify the efficiency and advantage of this DFMFI.
Keywords :
data mining; matrix algebra; tree searching; vectors; DFMFI algorithm; compressed FP-tree; conditional matrix; data mining application; dataset information; depth-first search algorithm; global 2-itemset pruning; local extension pruning; maximal frequent itemset mining; vector logic operation; Itemsets; Compressed FP-Tree; Conditional matrix; Data mining; Maximal frequent itemsets;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Computational Intelligence (ICACI), 2015 Seventh International Conference on
Conference_Location :
Wuyi
Print_ISBN :
978-1-4799-7257-9
Type :
conf
DOI :
10.1109/ICACI.2015.7184770
Filename :
7184770
Link To Document :
بازگشت